Resumen de las lecciones de Cálculo Diferencial e Integral

RESUMEN

de las lecciones de

CALCULO DIFERENCIAL E INTERNAL

explicadors en la Universidad

de Barceloux

POR

D. LAURO CLARIANA RICART

Catedrático de la expresada asignatura

1892

Barcelona ~~.

Tutroducción.

Siendo los indefinidamente pequeños, asi como los indefinidamente grandes, los imicos elementos que juneden constituir la base de la cantidad en matemáticas, (x) sontetizados en lo finito, ordinitire mos en esta ciencia tres categorias de contidad, bajo la forma signiente:

3ª Correspondiente à los indéfinidamente pequenas

2º Correspondiente à la finita

3ª Correspondente à les molefinidamente grandes.

Estos son los unicos y verdaderos conseptos de constrolad que se enlagan direcramente con la diferencial de Leibnitz

A fin de dar caracter uniforme à mestro nétrolo, convendremos en eliminar en enanto sea posible de mestros cálandos, el cero y el infinitir à no ser que por respeto històrico tengamos olguna que otra vez necesidad de recordando; lo propio decimos respecto à la teoria de

(x) Véase la menioria inserta en el compte vender,, correspondiente al congreso científico internacional de Paris 1891.

lus limites, que tan directamente se enlaza con los simbolos antercormente experesados; asi por ejemplo al tratar del coeficiente diferencial equivalente á la derivada de una funcion, despues de hater hablado la relacion de los incrementos, en vez de tornor el limite nos bastará pasar de lo finito a lo molefinido, ó bajo otros terminos, mas correctos, jeasar de la 2ª á la 5ª categorio de la comtidad

Nadie debe ignovour que la teoria de los limites presende por completo de esa infinidad
de mundos que constituyen los diferentes orde
nes de los modefinidamente pequeños, asion
mo de los indefinidamente grandes; el partidario de la escuela de los limites oubre convelo trigido todo aquello que podria mortificarle;
podriamos decir que cual tenedor de libros perezoso
se propone de un solo hachazo destruir todos los
edificios comerciales do se halla hacinada la
riqueza, á fin de evitarre el trabajo improbo
à que le sujeta el debe y el haber con que
juega constantemente el capital.

al objeto de que desagrarezcan de mestros calculos en enanto sea posible el cero y en partionlar el signo ∞ , designaremos los indefinidamente prequeños por \underline{v} y los indefinidamente grandes por \underline{I} : de esta merte evitaremos que los citados símbolos deservovistos de variabilidad vengan á eppresar de una momera impropria todos los diferentes óvolenes de los indefinidos, vesultando por ende confusiones simouento dentro del amálisis, como se puede apreciar acando se trata de las formas indeterminadas expresadas por $\frac{20}{500}$ 0.00

Dificil es averignar lo que representan estas expresiones; mientras que si se escribiera $\frac{i^m}{i^m}$; $\frac{I^m}{I^m}$; I^m - I^n b.

en el concepto de spré un y u representaran los diferentes órdenes de los moletinidos probriamos facilmente segun fuere min darnos auento del como se viene á porrar á una cualquiera de las tres categorias que hemos señalados porral la contidad.

Por fin, no se crea que obiohas tres categorias de contidad deban tomarse de una memera absoluta, pues cabe situarnos en un mundo enalquiera de los mudios inclesimidos que existen por a colejor immediatamente enales estavain por encima y debajo de nosotros, recabando de este modo las altimas trinchevas por do la inteligencia huma na quede esparvoir su vuelo. El antor

e Julice Ja

	Ligina
Introducción	5.
Brolegonerson	- 9.
Primera parte	
Calculo Siferencial.	
Principios fundamentales del calculo diferencial	~ 55.
Funciones higrerbólicas directas é inversas.	- 63.
Diferenciales de funciones hiperbolicas	- 68.
Devivadas y diferenciales de las determinantes	73.
Derivadus y diferenciales de divertes órdenes de	
fursioner de una sola vaviable independiente	78.
Formula de Leiberitz	82.
Devivadas succivas de algunas funciones para	
el valor persticular p=0	- 85.
Diferenciacion de funciones implicitas	P9.
Geniver des ordenes superiores al primero de	
funciones de unidras verviables rudeprendientes	94.
Diferenciales totales de diversos ordenes de um-	
chas vorviables independientes	- 96.
Diferencieron de funciones de variables depondiente	99.
Défencioneles de diversos ordenes de funciones implicitas -	100.
90	102.

	Pagin
bliminacion de funciones arbitrarias	•
Del sambio de vaviables	113.
Del combie de vorviables en funciones de dos é mas	
variables indépendientes	. 117.
De la determinante funcional evu las determi-	
nantes Ty H. your relaciones	121.
Déferenciales de funciones de variables evenplejas	126.
Tonula de fagrange	130.
aplicaciones geométricas.	
Diferencial del ávea de una curva plana	133.
Diferencial de un avec de enva plana	134.
Curvas planas referidas a ejes polares	136.
Contacto de curvas filomas	140.
hinean osculatrices	144
Sentido de la curvatura de una curva dada	149.
aplicaciones del vadio de curvatura	152.
Evolutar y evolventes de curvas plamas	155.
Determinación de la evoluta en algunas auvras.	158.
Estudio de las rivolutas y envolventes	164.
Aplicaciones	165.
Prentos singulares de las ourvos plamas	168.
Linear alabendar	175.
Conacion de la tougente	175.
Angulo de la ty. con los ejes coordenados	176.
V /	9.480.000000

	Paginas
Diferencial de un aver de unva alabeada	
id en evordenadas proteires	
Plano osculador	180.
Aplicación à la hélice	182.
De las superficies envous	184.
boucion de la normal	185.
Superficies envolventes	188.
Curvatura de las lineas en el espacio	191.
Circulo osculador	194
Normal principal	195
Coreme de los ing. que la normal principal forma	
Coreme de los oing, que la normal principal forma con los ejes coordenados.	175.
Augulo de torsion i de segunda curvatura en las	
curras alabeadas	- 197.
Aplicación de los radios de curvatura oi la fiélice -	202.
Diferenciales correspondientes à los corenos de los ong?	
formados por la tg., normal principal, y eje del	
rivarlo osculados cuando se hace referencia á un	
funto de una curva alabeada	203.
Determinación de la expresión de la superficie po-	
lar en general de una linea enalquiera	205.
Aplicaciones à la hélice	206.
Erfera vseulatriz	208.
forigitud del radio de la esfera osculatriz	210.
Evolutar de curvas alabeadas	213.

	Paginas
Ecuaciones de las evolutas	215.
terrier de la curvatura en les superfixies	216.
Curratura de las recciones normales	219.
Secciones principales	221.
Expresion de las curvaturas en funcion de las secciones	
jorinapales	222.
Puntos mubilicales	224.
Cálculo de las direcciones de las secciones jurincipales	225.
Definicione de la indicatoriz	229.
Linear de curvatura	231.
Consideraciones grals de las superficies viline ricas -	238.
Superficies évuicas	220.
D. de revolucion	241.
Consideraciones grals de las superficies convides	243.
Suprevficies descrivollables	244.
W. regladas	245.
Pigunda Parte.	
Cálculo Integral.	
Mociones preliminares	251.
Tutegracion immediata	
id. por partes	
id por sustitución	
Procedimientos grals para la integración de fraccio-	
nu racionales	266.

Dazinas
laro general de fracciones racionales 271.
Integracion de funciones irracionales 274.
Aplicaciones de la teoria anterior 277.
Integración de diferenciales histornicas 280
Aplicaciones de integrales correspondientes à diferen-
ciales binomias 287.
Integracion de funciones trascendentes 294. D. et compuestas varias tras-
andentes 296.
Integración por sevies 307.
Tutegral eliptica de primera especie 312.
Integracion de funciones diferenciales de mudias
variables independientes 314.
Integracion de funciones diferenciales de tres varia-
bles independientes 316.
Nociones grals acerca de las integrales definidas 319.
Determinacion de algunas integrales definidas
particulares 322.
Fórmula de Wallis 324.
Valores de integrales definidas cuando uno ó
lor der limiter overen indefinidamente 325.
Determi: Eacion de integrales definidas por medio de
la disercuciación é integración bajo el signo J 335.
Integrales eulevionois 346.
Reduccion de integrales multiplas 353.

	<u>Páginas</u>
Applicaciones - Sistema de coordenadas ferbares	356.
Método de Mr. Devidhlet	160.
aplicaciones geométricas.	
Cuadratura de figuras planas	364.
Rectificación de curron	373.
Aplicaciones	374.
Cubatura de robidos	385.
Aplicaciones	387.
Volimenes de cuivos terminados por superficies	
enalerquiera.	389,
Aplicacion al elipsoide	390.
Volinneres de cuevpos en coordenadas polemes	392.
Cuadratura de superficies aurvas analesquiera	393.
Aplicación à la erfera	395.
bradratura de las superficies de revolucion	396.
Aplicación al elipsoide de revolución	397.
avea de las superficies curvas en evordenados	
	400.
- Integracion de ecuaciones diferencia	
Integracion de cenaciones diferenciales	
D. D. D de primer orden	416.
bjumples	420.
benainmes lineales.	421.
Estudio del factor que transforma en integrable el	
primer miembro de una ecuación diferencial	425.

<u> Pagir</u>	ua
Problema de las trayectorias 428	1.
benación diferencial de primer orden de un grado enal-	
quieva 431.	
bjenydos 432	
bjenyster	•
Bjemplos 44	1.
Integracion de emaciones difsimples de un orden	
Integracion de emaciones diffrimples de un orden superior 444	٠.
Integon de ecua que pueden reducirse à morden interior _ 450	•
id. sd. lineales de un orden analgeriera 454	
D. de la cenación hueal sompleta: 456.	
Caso particular 459.	
Intgon de cenaciones lineales de coeficientes constantes	
grin Évenino independiente 459 Ejengstos 460	•
Sjengstor 460	•
Tutegé de ecuaciones dif 2 pinneltémeas 463	•
w. w. pormedio de séries 469	٠
benaciones diferenciales provides 476	•
Letez on de cenaciones dif provinces de primer orden	
y de primer grado	7.
Aplicación de la terria precedente à la integración	
de enraciones dif ^b parciales de diverses closes de m-	
frerficier - Superficier eiléndricas 483	
id. convider 485	
id. convider 485	•

	Pagino
Superficies de revolucion	
bjercición	4.86.
Eercera Parte.	
Cilculo de variaciones.	
Calculo de las vaviaciones	493.
Fuverion de la signer dy d	476.
D. D. dés	497.
Eppresion de la variacion de una integral definida.	
betudio de a mapino y minimo de ma integral desfinida-	501.
Mapino y minimo relativos	50%.
Aplicaciones del calculo de variaciones	504.
Linea mas sorta entre do; puntos en un jelomo	504.
w. w. enderpaio	50%.
id. id. trazada en una superficio	510.
baller la euro plema que pera jurdos funtos dados	
que engendra una superficie de revinción any.	
åvea es un minimo girando al rededor de un eje	
situado en su plomo	- 511.
Hallar la curra que bejo un contorer ciado en-	
eierra la mayor aperficie posible	512.
Cuarta Poirte.	
Cálendo de Siferencias.	
Cálculo directo de las diferencias	517.
Desarrollo de las expresiones Du y un	518.
Determinar las diferencias meesivas en varios funcione	1-519.

<u> </u>	ágina
Calado inverso de las diferencias-jeneralidades	520.
Integraçion de funciones regime diferencias finitas	521.
Descrivollo de la expresion Du « série	522.
Aplicación del método de integración por partes en las diferencias	524.